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Abstract

Let T be a bounded linear operator defined on a Banach space X.
We investigate the existence of solutions for a class of nonlinear fractional
equation in the form

(∗)
{

Δαu(n) = Tu(n) + f(n, u(n)), n ∈ N0, 0 < α ≤ 1;
u(0) = x,

on the vector-valued weighted sequence space

l∞f (N;X) =

{
x : N → X / sup

n∈N
‖x(n)‖
nn!

< ∞
}
.

Our analysis relies on the fixed point theory and operator-theoretical meth-
ods.
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1. Introduction

The study of existence and qualitative properties of time-discrete solu-
tions for fractional equations is a matter of great deal of interest in the last
decade ([1, 2, 5, 6, 16, 17, 18, 19, 30] and [33]). In spite of the significant in-
crease of research in this area, there are still many open questions regarding
fractional difference equations. In particular, the study of well posedness
for the semidiscretisation in time of evolution equations, involving bounded
linear operators defined on Banach spaces remains largely untreated. These
abstract fractional models are closely connected with numerical methods
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for partial differential equations, integro-differential equations [14, 32], evo-
lution equations with memory [25] and lattices models [27, 28]. The theory
of discrete fractional equations is also a promising tool for several biological
and physical applications where the memory effect appears [8, 9].

In this paper, we study the existence and uniqueness of solutions for
the non-linear abstract problem

Δαu(n) = Tu(n) + f(n, u(n)), 0 < α < 1, n ∈ N0, (1.1)

where T : X → X is a bounded linear operator defined on a Banach space
X; f : N0 ×X → X a suitable function and

Δαu(n) =

∫ ∞

0

tn

n!
e−tDα

t u(t)dt, n ∈ N0, (1.2)

corresponds to the Poisson transformation of the fractional differential op-
erator Dα

t in the sense of Riemann-Liouville. See the paper [23] where this
important relation has been recently highlighted.

Note that (1.1) is an abstract way to write the modeling of some classes
of fractional integro-differential equations and PDE discretized only in time.
For instance, the fractional nonconvolution equation

Dα
t u(t, x) =

∫
k(x, s)u(t, s)ds + f(t, u(t, x)), t ≥ 0 x ∈ Ω ⊂ R

N ,

can be discretized in time, using (1.2), as the equation

Δαu(n, x) =

∫
k(x, s)u(n, s)ds + f(n, u(n, x)), n ∈ N0, x ∈ Ω ⊂ R

N ,

where the kernel k is a complex-valued measurable function and f is a
suitable forcing term. It admits the form (1.1) where

Tf(x) =

∫
k(x, s)f(s)ds,

is a bounded operator. In the case α = 1, such time-discrete equations arise
in a variety of contexts [4], [13]. In the continuous case, it is well known
that in order to have existence of solutions, one of the main ingredients
is the compactness of the operator T. However, in the discrete case, there
are important practical situations where this property does not occur. For
example, if we consider a boundary value problem as a second-kind bound-
ary integral equation, the resulting integral operator T will, in general, be
non-compact if the boundary of the domain of interest is only piecewise
smooth. See [4, Section 7].

As a consequence of the results in this paper, we will show that when
T is non-compact, we can still have existence of solutions for the fractional
model (1.1). See Corollary 4.1 and Example 5.1. In this way, new insights
into the analysis of integral equations with non-compact operators can be
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gained by considering a ”tuning” in the way of a fractional order in the
equation or, from another point of view, by consideration of some amount
of discrete-time memory in the system.

Our method of proof uses a new technique which consists in the appro-
priate handling of a special sequence of bounded operators introduced in
[22], called α-resolvent families. They play a central role in the representa-
tion of the solution by means of a kind of discrete variation of parameters
formula. A second main ingredient is the introduction of a special vector-
valued Banach space of weighted sequences l∞f (N;X), whose exceptional

properties allows to prove the existence of solutions for (1.1) under certain
conditions on the nonlinear term.

The outline of this paper is as follows: Section 2 is devoted to prelimi-
naries, recalling the definition of the fractional difference operator that we
will use and that seems to be more convenient for our purposes. In this
line of ideas, we note the recent paper [10], where it was proved that many
concepts of fractional differences currently used in the literature are simply
related by translation. We remark that our definition is at the basis of this
equivalence.

In Section 3 we recall the concept of α-resolvent sequences, denoted
by Sα(n), that was introduced in [22]. This α-resolvent families have an
interesting characterization [22, Theorem 3.4] connected to the concept of
Mittag-Leffler operator sequence. This tool allows to obtain an explicit
representation of the solution for the fractional linear difference equation
associated to (1.1) with initial value u(0) = u0, namely (Theorem 3.1)

u(n) = Sα(n)u0 + (Sα ∗ f)(n− 1), n ∈ N.

In Section 4 we study the fully nonlinear problem (1.1). First, an
equivalent formulation of the solution is motivated by the representation
of the solution in the linear case (Theorem 4.1). Next, we introduce the
vector-valued Banach space of weighted sequences

l∞f (N;X) =

{
ξ : N → X/ sup

n∈N
‖ξ(n)‖
nn!

< ∞
}
,

that we called the factorial number system space (fns-space). This space
will play a central role in the development of this section. The main ingre-
dient for the success of our analysis is the important observation that the
special sequence nn! - that represents the factorial expression of a positive
integer - provides a very suitable weight in order to find existence of so-
lutions for (1.1) in the vector-valued space l∞f (N;X). See the exceptional

properties of this sequence in the identities (4.2) below. In this way, our
analysis gives mild restrictions on the ingredients of the problem. In pass-
ing, we obtain information about the growth rate of u(n) as n → ∞. We
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give two positive results in this direction. See Theorem 4.1 and Theorem
4.3. They are based on the Banach fixed point theorem and the Leray-
Schauder alternative theorem, respectively. Of particular interest is the
following result: Suppose ‖T‖ < αα(1− α)1−α and f : N0 ×X → X verify
the following hypothesis:

(F) f(n, 0) �= 0 for all n ∈ N0 and there exists a positive sequence a ∈
�1(N0) and constants c ≥ 0, b > 0 such that ‖f(k, x)‖ ≤ a(k)(c‖x‖+
b) for all k ∈ N0 and x ∈ X.

(L) The function f satisfies a Lipschitz condition in x ∈ X uniformly
in k ∈ N0, with Lipschitz constant Lf < 18

5 (α
α(1− α)1−α − ‖T‖).

Then the problem (1.1) with initial condition u(0) = 0 has an unique
solution in l∞f (N;X). Finally, Section 5 provides concrete examples and
applications of our general results. We remark our Example 5.1, where the
dependence of the nonlinearity f, the operator T and the fractional order
is highlighted.

2. Preliminaries

In this section, we provide the necessary preliminaries on fractional
differences, needed in the forthcoming sections. Additional information on
this topics can be found in the monograph [3].

Let N0 be the set of non-negative integer numbers and let X be a com-
plex Banach space. We denote by s(N0;X) the vectorial space consisting of
all vector-valued sequences u : N0 → X. In this context, the forward Euler
operator Δ : s(N0;X) → s(N0;X) is defined by

Δu(n) := u(n+ 1)− u(n), n ∈ N0.

and for m ∈ N, we define recursively the m-th order forward difference
operator Δm : s(Na;X) → s(Na;X) by

Δmu(n) := Δm−1 ◦Δ =
m∑
j=0

(
m

j

)
(−1)m−ju(n+ j), n ∈ N0.

We also denote Δ0 ≡ I, where I : s(N0;X) → s(N0;X) is the identity
operator.

Recall that the finite convolution ∗ of two sequences u(n), v(n) ∈ s(N0;X)
is defined by

(u ∗ v)(n) :=
n∑

j=0

u(n− j)v(j), n ∈ N0.

Definition 2.1. ([22, Definition 2.5]) Let α > 0 be given and u :
N0 → X. We define the fractional sum of order α as follows
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Δ−αf(n) =

n∑
k=0

kα(n− k)u(k) = (kα ∗ u)(n), n ∈ N0, (2.1)

where

kα(j) =
Γ(α+ j)

Γ(α)Γ(j + 1)
, j ∈ N0.

This definition of fractional sum corresponds to a particular case of
the definition proposed by Atici and Eloe [7] in 2009. The importance
of this kernel began only recently to be highlighted [23], [29]. For an ex-
plicit development, see [22] and references therein. One of the reasons to
choose this operator is because their flexibility to be handled by means of
z-transform methods. We recall that the z-transform of a vector-valued
sequence u ∈ s(N0;X), is defined by

ũ(z) :=
∞∑
j=0

z−ju(j),

where z is a complex number. Note that convergence of the series is given
for |z| > R with R sufficiently large. The fractional sum has a better
behavior for mathematical analysis when we ask, for example, for definitions
of fractional sums and differences on subspaces of s(N0;X) like e.g. lp
spaces. We notice that, recently, this approach by means of the z-transform
has been followed by other authors, see [11, 12]. It is also interesting to
note that it was recently proved that different notions of fractional sum,
existing in the current literature, are equivalent with Definition 2.1 modulo
translation, see [10].

The next concept is analogous to the definition of a fractional derivative
in the sense of Riemann-Liouville, see [26] and [5]. In other words, to a
given vector-valued sequence, first fractional summation and then integer
difference are applied.

Definition 2.2. ([22, Definition 2.7], [23]) The fractional difference
operator of order α > 0 (in the sense of Riemann-Liouville) is defined by

Δαu(n) := Δm ◦Δ−(m−α)u(n), n ∈ N0,

where m− 1 < α < m, m = �α�.

We observe that the above definition corresponds to sampling by means
of the Poisson distribution for the well-known fractional differential oper-
ator in the sense of Riemann-Liouville. We remark that such strong and
important relation has been only freshly discovered [23].
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3. α-resolvent sequences

In this section, we recall the operator theoretical method introduced in
[22] to study the linear fractional difference equation

Δαu(n) = Tu(n) + f(n), n ∈ N, (3.1)

with initial condition u(0) = x ∈ X and for T ∈ B(X), where B(X) denotes
the set of all bounded linear operators on a Banach space X.

Definition 3.1. ([22, Definition 3.1]) Let T be bounded operator
defined on a Banach space X and α > 0. We call T the generator of an α-
resolvent sequence if there exists a sequence of bounded and linear operators
{Sα(n)}n∈N0 ⊂ B(X) that satisfies the following properties

(i) Sα(0) = I
(ii) Sα(n+ 1) = kα(n + 1)I + T (kα ∗ Sα)(n) for all n ∈ N0.

In this case, Sα(n) is called the α-resolvent sequence generated by T .

Notice that if T generates an α-resolvent family, then it is unique ([22,
Lemma 3.2]).

Example 3.1. In case α = 1 we have the recurrence relation

S1(0) = I and S1(n) = I + T

n−1∑
j=0

S1(j) = (I + T )n, n ∈ N0.

In the general case, an explicit representation of α-resolvent families is
given in [22, Theorem 3.4] and reads as follows:

Sα(n) =
n∑

j=0

Γ(n− j + (j + 1)α)

Γ(n− j + 1)Γ((j + 1)α)
T j, n ∈ N0. (3.2)

Moreover, the sequence of operators {Sα(n)}n∈N0 allows to obtain an ex-
plicit representation for the solution of equation (3.1) by means of a kind
of variation of parameters formula. More precisely, we have the following
theorem.

Theorem 3.1. ([22, Theorem 3.7]) Let 0 < α ≤ 1, T ∈ B(X) and
f : N → X be given. The unique solution of (3.1) with initial condition
u(0) = u0 can be represented by

u(n) = Sα(n)u0 + (Sα ∗ f)(n− 1), n ∈ N.
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Remark 3.1. In the border case α = 1 we obtain the representation
proved in [3, Proposition 1.3.1].

Using the property of the z-transform on the convolution, we obtain
formally from the definition

S̃α(z) = z

(
z

k̃α(z)
− T

)−1

whenever
z

k̃α(z)
∈ ρ(T ), where ρ(T ) denotes the resolvent set of T . Since

k̃α(z) =
zα

(z − 1)α
,

for |z| > 1, we have

S̃α(z) = z((z − 1)αz1−α − T )−1,

whenever the right hand side exists. Then, applying the inverse z-transform,
we obtain

Sα(n) =
1

2πi

∫
C
zn((z − 1)αz1−α − T )−1dz, (3.3)

where C is a circle, centered at the origin of the complex plane, that encloses
all spectral values of (z − 1)αz1−α − T.

The main result in this section is the following theorem that gives
important information concerning qualitative properties of α-resolvent se-
quences.

Theorem 3.2. Let 0 < α ≤ 1, T ∈ B(X) and {Sα(n)}n∈N0 the α-
resolvent sequence generated by T . Then the following properties hold:

(i) If X is an ordered Banach space and T ≥ 0 then Sα(n) ≥ 0 for all
n ∈ N0.

(ii) Let X be an ordered Banach space and T ≥ 0. If α < β, then
Sα(n) < Sβ(n) for all n ∈ N0.

(iii) If ‖T‖ < αα(1 − α)1−α then ‖Sα(n)‖ → 0 as n → ∞ and the
estimate

sup
n∈N0

‖Sα(n)‖ ≤ 1

αα(1− α)1−α − ‖T‖
holds.
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P r o o f. (i) follows from (3.2) directly. To prove (ii), we note that for
k ∈ N and λ1 < λ2 ∈ R,

Γ(k + λ1)

Γ(λ1)
= (k − 1 + λ1)(k − 2 + λ1) · · · λ1

< (k − 1 + λ2)(k − 2 + λ2) · · · λ2 =
Γ(k + λ2)

Γ(λ2)
.

Then,

Sα(n) =
n∑

j=0

Γ(n− j + (j + 1)α)

Γ(n− j + 1)Γ((j + 1)α)
T j

<
n∑

j=0

Γ(n− j + (j + 1)β)

Γ(n− j + 1)Γ((j + 1)β)
T j = Sβ(n).

(iii) Let 0 < R < 1. From (3.3) we have

Sα(n) =
1

2πi

∫
|z|=R

zn((z − 1)αz1−α − T )−1dz

=
1

2π

∫ 2π

0
Rneint((Reit − 1)αR1−αei(1−α)t − T )−1Rieitdt

and then

‖Sα(n)‖ ≤ 1

2π

∫ 2π

0
Rn‖((Reit − 1)αR1−αei(1−α)t − T )−1‖Rdt.

Define f(R) = (1 − R)αR1−α, R ∈ (0, 1). It is not difficult to see that
the minimum value of f is attained at R = 1 − α and that f(1 − α) =
αα(1− α)1−α. Therefore

‖T‖ < αα(1− α)1−α ≤ (1−R)αR1−α

≤ |(Reit − 1)αR1−αei(1−α)t|, t ∈ (0, 2π), R ∈ (0, 1),

and then by [21, Theorem 7.3-4, p.377] we have that (Reit−1)αR1−αei(1−α)t−
T is invertible for each t ∈ (0, 2π), R ∈ (0, 1) and

((Reit − 1)αR1−αei(1−α)t − T )−1 =

∞∑
j=0

T j

((Reit − 1)αR1−αei(1−α)t)j+1
.

We deduce that

‖((Reit − 1)αR1−αei(1−α)t − T )−1‖ ≤ 1

|(Reit − 1)αR1−αei(1−α)t| − ‖T‖
≤ 1

(1−R)αR1−α − ‖T‖ .

Consequently,
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‖Sα(n)‖ ≤ 1

2π

∫ 2π

0

Rn+1

(1−R)αR1−α − ‖T‖dt

≤ Rn+1

αα(1− α)1−α − ‖T‖ , R ∈ (0, 1).

It proves that ‖Sα(n)‖ → 0 as n → ∞ and the inequality

sup
n∈N0

‖Sα(n)‖ ≤ 1

αα(1− α)1−α − ‖T‖ ,
is valid for all 0 < α < 1. The proof is complete. �

The following picture illustrates the function α → αα(1− α)1−α
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Figure 1. α → αα(1− α)1−α

4. Non-linear fractional difference equations on Banach spaces

Let T be a bounded linear operator defined on a Banach space X. In
this section we study the problem{

Δαu(n) = Tu(n) + f(n, u(n)), n ∈ N0, 0 < α ≤ 1;
u(0) = 0.

(4.1)

Remark 4.1. Note that u(0) = 0 implies u(1) = f(n, 0), for all n ∈ N0.
Indeed, by definition we have Δαu(n) = (k1−α ∗ u)(n + 1) − (k1−α ∗ u)(n)
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and hence from (4.1) we obtain

f(n, 0) = Δαu(0) = (k1−α ∗ u)(1) − (k1−α ∗ u)(0)
= k1−α(1)u(0) + k1−α(0)u(1) − k1−α(0)u(0) = u(1).

Definition 4.1. Let T ∈ B(X), f : N0 ×X → X and 0 < α ≤ 1 be
given. By a solution of (4.1) we understand a sequence u : N0 → X that
satisfy (4.1) for all n ∈ N0.

The following result is a consequence of Theorem 3.1. It gives an equiva-
lent representation of the solution of (4.1) in terms of the family of bounded
operators Sα(n) generated by the operator T. It is the key tool in order to
analyze existence of solutions for nonlinear equations.

Theorem 4.1. Let T ∈ B(X), f : N0 × X → X and 0 < α ≤ 1 be
given. Let {Sα(n)}n∈N0 be the α-resolvent sequence generated by T . The
following assertions are equivalent:

(i) u is a solution of (4.1);

(ii) u(0) = 0 and u(n) =
n−1∑
k=0

Sα(n − 1− k)f(k, u(k)), n ∈ N.

P r o o f. (ii) =⇒ (i). It follows from (the proof of) Theorem 3.1.
(i) =⇒ (ii). By hypothesis, we obtain

(Sα ∗ f)(n− 1) = (Sα ∗Δαu)(n − 1) − T (Sα ∗ u)(n− 1).

By [22, Lemma 3.6] we have the identities

(Sα ∗Δαu)(n− 1) = Δα(Sα ∗ u)(n− 1)− Sα(n)u(0),

and

Δα(Sα ∗ u)(n− 1) = (ΔαSα ∗ u)(n− 1) + Sα(0)u(n).

Taking into account that Sα(0) = I and u(0) = 0 we conclude that

(Sα ∗ f)(n− 1) = (ΔαSα ∗ u)(n− 1) + u(n)− T (Sα ∗ u)(n− 1).

By Theorem 3.1 we know that ΔαSα(n) = TSα(n). Then, we arrive from
the above identity to (ii). The proof is complete. �

We notice that there is a rich literature on qualitative properties of
difference equations of Volterra type, as the given in (ii) above. However,
most of them are referred to the scalar case or finite dimensional case, i.e.
when Sα(n) is scalar-valued or matrix-valued, instead of operator-valued
as given here. For instance, in [15] the author give a survey of some of the
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fundamental results on stability and asymptotic properties in the scalar-
valued and matrix-valued case, and states some open problems. See also
[20] for another survey containing related results on stability and the use
of resolvents.

Remark 4.2. Observe that Theorem 4.1 is valid only in the range
0 < α ≤ 1. This is due to the fact that the representation given in Theorem
3.1 is only true for such values of α. In the case of the range 1 < α ≤ 2 a
representation of the solution, solely in terms of certain family of operators,
is given in [24]. Note that in such case two initial conditions for the problem
(4.1) are needed.

Definition 4.2. We call the factorial number system space (fns-space)
the vector-valued weighted space defined by

l∞f (N;X) =

{
ξ : N → X/ sup

n∈N
‖ξ(n)‖
nn!

< ∞
}
,

and endowed with the norm ‖ξ‖f = sup
n∈N

‖ξ(n)‖
nn!

.

Note that the sequence
1

nn!

n−1∑
k=0

kk! is decreasing for n ≥ 3 and by [31,

formula 33 p.598] it is verified that

sup
n∈N

1

nn!

n−1∑
k=0

kk! =
5

18
and lim

n→∞
1

nn!

n−1∑
k=0

kk! = lim
n→∞

n!− 1

nn!
= 0. (4.2)

The following is our first positive result on existence of solutions for the
problem (4.1). It uses a Lipschitz type condition.

Theorem 4.2. Let T ∈ B(X) be the generator of a bounded α-
resolvent sequence {Sα(n)}n∈N0 , for 0 < α ≤ 1. Let f : N0 × X → X be
given and verifying the following hypotheses:

(F) f(n, 0) �= 0 for all n ∈ N0 and there exists a positive sequence a ∈
�1(N0) and constants c ≥ 0, b > 0 such that ‖f(k, x)‖ ≤ a(k)(c‖x‖+
b) for all k ∈ N0 and x ∈ X.

(L) The function f satisfies a Lipschitz condition in x ∈ X uniformly in
k ∈ N0, that is, there exists a constant L > 0 such that ‖f(k, x) −
f(k, y)‖ ≤ L‖x− y‖, for all x, y ∈ X, k ∈ N0, with L <

18

5‖Sα‖∞ .

Then the problem (4.1) has an unique solution in l∞f (N;X).
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P r o o f. Let us define the operator G : l∞f (N;X) → l∞f (N;X) given
by

Gu(n) =

n−1∑
k=0

Sα(n− 1− k)f(k, u(k)), n ≥ 1.

First, we show that G is well defined: Let u ∈ l∞f (N;X) be given. By using

the assumption (F) and the boundedness of Sα(n) we have

‖Gu(n)‖ ≤
n−1∑
k=0

‖Sα(n− 1− k)‖‖f(k, u(k))‖

≤
n−1∑
k=0

‖Sα(n− 1− k)‖a(k)[c‖u(k)‖ + b]

≤ c‖Sα‖∞‖a‖∞
n−1∑
k=0

‖u(k)‖ + b‖Sα‖∞
n−1∑
k=0

a(k)

≤ c‖Sα‖∞‖a‖∞‖u‖f
n−1∑
k=0

kk! + b‖Sα‖∞‖a‖1,

for each n ∈ N. Hence,

‖Gu(n)‖
nn!

≤ c‖Sα‖∞‖a‖∞‖u‖f 1

nn!

n−1∑
k=0

kk! + b‖Sα‖∞‖a‖1.
It proves, in view of (4.2), that Gu ∈ l∞f (N;X). We next prove that G is

a contraction on l∞f (N;X). Indeed, let u, v ∈ l∞f (N;X) be given. Then, for
each n ∈ N,

‖Gu(n) −Gv(n)‖ ≤
n−1∑
k=0

‖Sα(n− 1− k)‖‖f(k, u(k)) − f(k, v(k))‖

≤ ‖Sα‖∞
n−1∑
k=0

‖f(k, u(k)) − f(k, v(k))‖

≤ ‖Sα‖∞
n−1∑
k=0

L‖u(k) − v(k)‖

≤ ‖Sα‖∞L‖u− v‖f
n−1∑
k=0

kk!,

where we have used the assumption (L). Therefore

‖Gu(n) −Gv(n)‖
nn!

≤ ‖Sα‖∞L‖u− v‖f 1

nn!

n−1∑
k=0

kk!,
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and consequently,

‖Gu−Gv‖f ≤ ‖Sα‖∞ 5

18
L‖u− v‖f ,

where we have used (4.2). Then, G has a unique fixed point in l∞f (N;X),
by the Banach fixed point theorem. �

The next corollary gives an explicit bound on the Lipschitz constant.
Note that such Lipschitz constant vary with α.

Corollary 4.1. Let T ∈ B(X) and 0 < α < 1. Suppose ‖T‖ <
αα(1 − α)1−α and let f : N0 × X → X be given satisfying condition (F)
and the following hypothesis:

The function f satisfies a Lipschitz condition in x ∈ X uniformly
in k ∈ N0, with Lipschitz constant L < 18

5 (α
α(1− α)1−α − ‖T‖).

Then the problem (4.1) has an unique solution in l∞f (N;X).

The following lemma provides a necessary tool for the use of the Schauder’s
fixed point theorem, needed in the second main result on existence of solu-
tions.

Lemma 4.1. Let U ⊂ l∞f (N;X) such that:

(a) The set Hn(U) =
{

u(n)
nn! : u ∈ U

}
is relatively compact in X, for all

n ∈ N.

(b) lim
n→∞

1

nn!
sup
u∈U

‖u(n)‖ = 0, that is, for each ε > 0, there are N > 0

such that
‖u(n)‖
nn!

< ε, for each n ≥ N and for all u ∈ U .

Then U is relatively compact in l∞f (N;X).

P r o o f. Let {um}m be a sequence in U , then by (a) for n ∈ N there is

a convergent subsequence {umj}j ⊂ {um}m such that lim
j→∞

umj (n)

nn!
= a(n),

that is, for each ε > 0 there exists N(n, ε) > 0 such that ‖umj (n)

nn! −a(n)‖ < ε
for all j ≥ N(n, ε). Let ε > 0 and N the value of the assumption (b). If
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we consider N∗ := min
0≤n<N

N(n, ε), then for j, k ≥ N∗ we have

sup
0≤n<N

‖umj (n)− umk
(n)‖

nn!
≤ sup

0≤n<N
‖umj (n)

nn!
− a(n)‖

+ sup
0≤n<N

‖umk
(n)

nn!
− a(n)‖ < ε/2 + ε/2 = ε,

and also

sup
n≥N

‖umj (n)− umk
(n)‖

nn!
≤ sup

n≥N

‖umj (n)‖
nn!

+ sup
n≥N

‖umk
(n)‖

nn!
< ε/2+ε/2 = ε.

Consequently,

‖umj − umk
‖! = sup

n∈N

‖umj (n)− umk
(n)‖

nn!
< ε,

therefore {umj}j is a Cauchy subsequence in l∞f (N;X) which finish the
proof of the lemma. �

For f : N × X → X we recall that the Nemytskii operator Nf :
l∞f (N;X) → l∞f (N;X) is defined by

Nf (u)(n) := f(n, u(n)), n ∈ N.

The next theorem is the second main result for this section. It gives
one useful criteria for the existence of solutions without use of Lipschitz
type conditions.

Theorem 4.3. Let T ∈ B(X) be a compact operator, generator of a
bounded α-resolvent sequence {Sα(n)}n∈N0 for 0 < α ≤ 1 and f : N0 ×
X → X be a function. Suppose that the condition (F) is satisfied and the
Nemytskii operator is continuous in l∞f (N;X). Then the problem (4.1) has

a solution in l∞f (N;X).

P r o o f. By the hypothesis, T is the generator of an α-resolvent se-
quence {Sα(n)}n∈N0 where Sα(n) can be described by formula (3.2). Let
us define the operator G : l∞f (N;X) → l∞f (N;X) by

Gu(n) =
n−1∑
k=0

Sα(n− 1− k)f(k, u(k)), n ∈ N.

To prove that G has a fixed point in l∞f (N,X), we will use Leray-Schauder
alternative theorem. We verify that the conditions of the theorem are
satisfied:

• G is well defined: It follows from condition (F) and was proved in
the first part of the proof of Theorem 4.2.
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• G is continuous: Let ε > 0 and u, v ∈ l∞f (N;X). Then, for each
n ∈ N,

‖Gu(n) −Gv(n)‖ ≤
n−1∑
k=0

‖Sα(n− 1− k)‖‖f(k, u(k)) − f(k, v(k))‖

≤ ‖Sα‖∞
n−1∑
k=0

‖f(k, u(k)) − f(k, v(k))‖

≤ ‖Sα‖∞‖Nf (u)−Nf (v)‖f
n−1∑
k=0

kk!.

Therefore

‖Gu(n) −Gv(n)‖
nn!

≤ ‖Sα‖∞‖Nf (u)−Nf (v)‖f 1

nn!

n−1∑
k=0

kk!.

Hence, by the assumption (ii) we obtain ‖Gu−Gv‖f < ε.
• G is compact: For R > 0 given, let BR(l

∞
f (N;X) := {w ∈ l∞f (N;X) :

‖w‖f < R}. To prove that V := G(BR(l
∞
f (N;X))) is relatively

compact, we will use Lemma 4.1. We check that the conditions in
this lemma are satisfied:

(a) Let u ∈ BR(l
∞
f (N;X)) and v = Gu. We have

v(n) = Gu(n) =
n−1∑
k=0

Sα(n− 1− k)f(k, u(k))

=

n−1∑
k=0

Sα(k)f(n − 1− k, u(n − 1− k)),

and then,

v(n)

nn!
=

1

n!

(
1

n

n−1∑
k=0

Sα(k)f(n− 1− k, u(n− 1− k))

)
.

Therefore
v(n)

nn!
∈ 1

n!
co(Kn), where co(Kn) denotes the convex

hull of Kn for the set

Kn =
n−1⋃
k=0

{Sα(k)f(ξ, x) : ξ ∈ {0, 1, 2, . . . , n−1}, ‖x‖ ≤ R}, n ∈ N.

Since T is compact, for all 0 < α ≤ 1 the sequence of operators
{Sα(n)}n∈N0 generated by T is compact. See formula (3.2).
Also, for all a ∈ N0 and σ > 0, the set {f(k, x) : 0 ≤ k ≤
a, ‖x‖ ≤ σ} is bounded because from condition (F) we have
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‖f(k, x)‖ ≤ a(k)[c‖x‖ + b] ≤ ‖a‖∞[cσ + b] for all 0 ≤ k ≤ a
and ‖x‖ ≤ σ. Consequently, the set {Sα(n)f(k, x) : 0 ≤ k ≤
a, ‖x‖ ≤ σ} is relatively compact in X for all n ∈ N0. Then
it follows that each set Kn is relatively compact. From the

inclusions Hn(V ) =

{
v(n)

nn!
: v ∈ V

}
⊆ 1

n!
co(Kn) ⊆ 1

n!
co(Kn),

we conclude that the set Hn(V ) is relatively compact in X, for
all n ∈ N.

(b) Let u ∈ BR(l
∞
f (N;X)) and v = Gu. Using condition (F), for

each n ∈ N we have

‖v(n)‖
nn!

≤ 1

nn!

n−1∑
k=0

‖Sα(n− 1− k)‖‖f(k, u(k))‖

≤ 1

nn!

n−1∑
k=0

‖Sα(n− 1− k)‖a(k)[c‖u(k)‖ + b]

≤ c‖Sα‖∞‖a‖∞‖u‖f 1

nn!

n−1∑
k=0

kk! +
1

nn!
b‖Sα‖∞‖a‖1

≤ c‖Sα‖∞‖a‖∞R
1

nn!

n−1∑
k=0

kk! +
1

nn!
b‖Sα‖∞‖a‖1,

then lim
n→∞

‖v(n)‖
nn!

= 0 independently of u ∈ BR(l
∞
f (N;X)).

Therefore, V = G(BR(l
∞
f (N;X))) is relatively compact in l∞f (N;X)

by Lemma 4.1 and we conclude that G is a compact operator.
• The set U := {u ∈ l∞f (N;X) : u = γGu, γ ∈ (0, 1)} is bounded: In

fact, let us consider u ∈ l∞f (N;X) such that u = γGu, γ ∈ (0, 1).

Again by condition (F),

‖u(n)‖ = ‖γGu(n)‖ ≤
n−1∑
k=0

‖Sα(n− 1− k)‖‖f(k, u(k))‖

≤ c‖Sα‖∞‖a‖∞‖u‖f
n−1∑
k=0

kk! + b‖Sα‖∞‖a‖1.

Then for each n ∈ N we have

‖u(n)‖
nn!

≤ c‖Sα‖∞‖a‖∞‖u‖f 1

nn!

n−1∑
k=0

kk! + b‖Sα‖‖a‖1.

In view of (4.2), we deduce that U is a bounded set in l∞f (N;X).
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Finally, by using the Leray-Schauder alternative theorem, we conclude that
G has a fixed point u ∈ l∞f (N;X). �

5. Examples and applications

In this section, we provide several concrete examples and applications
of the abstract results developed in the previous sections.

Example 5.1. Let P : C[0, 1] → C[0, 1] be the integral operator given
by

Pf(x) =

∫ 1

0
k(x, s)f(s)ds.

Suppose that

(H1) P is bounded, non compact and ‖P‖ = 1.

For a concrete example of a kernel k(x, s) such that T is non compact, see
[4, Section 7].

We study the existence of solutions for the problem⎧⎪⎨⎪⎩
Δαu(n, x) =

1

10

∫ 1

0
k(x, s)u(n, s)ds +

1 + u(n, x)

1 + sup
x∈[0,1]

|u(n, x)| ,

u(0, x) = 0,

(5.1)

for n ∈ N0, x ∈ [0, 1] and 0 < α < 1. Define

Tf(x) =
1

10

∫ 1

0
k(x, s)f(s)ds.

We will apply Corollary 4.1. We have ‖T‖ = 1
10 < αα(1−α)1−α. Then,

by Theorem 3.2, the operator T generates a bounded α-resolvent sequence
{Sα(n)}n∈N0 on C[0, 1] given by

Sα(n)f(x) =

n∑
j=0

Γ(n− j + (j + 1)α)

Γ(n− j + 1)Γ((j + 1)α)
T jf(x)

=

n∑
j=0

Γ(n− j + (j + 1)α)

Γ(n− j + 1)Γ((j + 1)α)

∫ 1

0
kj(x, s)f(s)ds, n ∈ N0.

where k0(t, s) := δt(s), the Dirac delta concentrated at t, k1(t, s) := k(t, s)
and

kj(t, s) :=

∫ 1

0
kj−1(t, τ)k(τ, s)dτ, j = 2, 3, ...

Define v(n)(x) := u(n, x) and f : N0 × C[0, 1] → C[0, 1] by f(n, v) :=
1+ v

1 + ‖v‖∞ , where 1(t) ≡ 1. Then the problem (5.1) can be rewritten as
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Δαv(n) = Tv(n) + f(n, v(n)), n ∈ N0.

with initial condition u(0) = 0. On the one hand, we observe that condition

(F) is satisfied by f defined above with a(k) =
1

2k
, c = 0 and b = 1. On the

other hand, note that for u1, u2 ∈ l∞f (N;C[0, 1]) and each n ∈ N0, we have

‖f(n, u1(n))− f(n, u2(n))‖ ≤
∥∥∥ 1 + u1(n)

1 + ‖u1(n)‖ − 1 + u2(n)

1 + ‖u2(n)‖
∥∥∥

=
∥∥∥(u1(n)− u2(n))(1 + ‖u2(n)‖) + (1 + u2(n))(‖u2(n)‖ − ‖u1(n)‖)‖

(1 + ‖u1(n)‖)(1 + ‖u2(n)‖)
∥∥∥

≤ ‖u1(n)− u2(n)‖
1 + ‖u1(n)‖ +

(1 + ‖u2(n)‖)‖u1(n)− u2(n)‖
(1 + ‖u1(n)‖)(1 + ‖u2(n)‖)

≤ 2‖u1(n)− u2(n)‖.
Therefore f is a Lipschitz function with constant L = 2. Since ‖T‖ = 1

10 ,
we notice that the condition (L) in Corollary 4.1 is satisfied if and only if

2 <
18

5

[
αα(1− α)1−α − 1

10

]
if and only if

0 < α <
3

2
or

17

20
< α < 1. (5.2)

For this and Corollary 4.1 we conclude that for all fractional order α > 0
in the range of values indicated in (5.2) we have that the fractional integro-
difference equation of Fredholm type

Δαu(n, x) =
1

10

∫ 1

0
k(x, s)u(n, s)ds + f(n, u(n, x)), n ∈ N0, x ∈ [0, 1]

with initial condition u(0, x) = 0 admits an unique solution in the space

l∞f (N;C[0, 1]) =

{
ξ : N → C[0, 1] / sup

n∈N
‖ξ(n)‖∞

nn!
< ∞

}
.

Alternatively, suppose that

(H2) P is bounded, compact and ‖P‖ = 1.

Then the conditions of Theorem 4.3 applied to the problem (5.1) are satis-
fied, without restriction on the fractional values α > 0. Consequently, the
problem (5.1) has an unique solution u ∈ l∞f (N, C[0, 1]).
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